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ABSTRACT 

This report presents a comparison of existing angle-only target motion anal- 
ysis algorithms which have applications in tracking under jamming conditions. 
Though a number of different algorithms have been proposed for this problem, 
the particular emphasis in this report is recursive style algorithms which are 
more suited to airborne applications. In particular, six algorithms are con- 
sidered, which are derivatives of either the standard or the extended Kaiman 
filter. Four of these algorithms are single-filter trackers while the other two 
are based on weighted sum of multiple filter outputs. Simulation results are 
presented to verify the claimed properties of these algorithms 
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1    Introduction 

The problem of angle-only Target Motion Analysis (TMA) arises in a variety of im- 
portant practical applications including sonar and radar. The fundamental objective of 
angle-only TMA, also known as passive ranging, is to track the kinematics (position and 
velocity) of a moving target using noise corrupted angle measurements only. In the case 
of autonomous passive ranging (single observer only), which we shall consider in this re- 
port, the observation platform needs to move in order to estimate the range of the target. 
The application of interest for our study is the tracking from an airborne platform, of an 
airborne target for which range information is not available, for example, as a result of 
noise jamming by the target. In such situations, the tracker needs to be able to maintain 
track, and estimate the range of the jammer, using angle measurements only. 

Various forms of solutions/algorithms have been proposed for the angle-only TMA 
problem [1, 2, 3, 4, 10], which mainly fall into two categories: batch processing type, and 
recursive type. The batch processing type involves delayed processing of all measurements 
and these algorithms tend to be computationally rather demanding. The recursive type are 
generally Kaiman filter based and are not computationally restrictive. Thus, for airborne 
applications, it is desirable to use recursive type angle-only TMA algorithms. 

This report presents the work done in the first stage of the study on passive ranging 
in jamming conditions. In particular, it presents a comparison of six recursive style angle- 
only TMA algorithms which are applicable to the tracking problem in a jamming situation. 
The algorithms considered are, 

1. Cartesian coordinate EKF, 

2. Pseudo-Linear estimator, 

3. Modified gain EKF, 

4. Modified Polar coordinate EKF, 

5. Range-Parameterised Cartesian coordinate EKF, and 

6. Range-Parameterised Modified Polar coordinate EKF. 

All algorithms are based on filters which are derivatives of either the standard or the 
extended Kaiman filter. The first four algorithms consist of single filters, and the last two 
are based on a weighted sum of multiple filter outputs. Except for algorithms (4) and 
(6), they are formulated in Cartesian coordinates. Algorithms (4) and (6) are derived in 
a different coordinate system called Modified Polar coordinates. 

Throughout the report, we make the following assumptions. First, we are tracking 
a single non-maneuvering target1 which uses ECM, with the assumption that the angle 
measurements are reliable. Second, we assume that the jamming has already started and 
we have detected its occurrence, i.e., we ignore for the time being the transition from a 

'At a later stage this will be extended to the case of a maneuvering target. 
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non-jammed to a jammed situation. Finally, for simplicity we assume 2-D measurements, 
although in airborne applications the measurements are in 3-D2. 

The organisation of the report is as follows. Section 2 describes the angle-only TMA 
problem in detail, and sets the mathematical framework for its solution. Sections 3-7 
present the six aformentioned angle-only TMA algorithms. In each of the sections 3-7, 
a brief summary of the algorithm development and some known properties pertaining to 
the algorithm are given. Simulation results for the algorithms are described in Section 8, 
followed by some concluding remarks in Section 9. 

2    The Angle-only TMA Problem 

target trajectory 

„,(0) rxt(0) 
Figure 1: Typical two-dimensional target-observer geometry 

Conceptually, the basic problem in angle-only TMA is to estimate the trajectory of a 
target (i.e., position and velocity) from noise corrupted sensor angle data. For the case 
of a single-sensor problem, these angle data are obtained from a single moving observer 
(ownship). To define the problem mathematically, consider the two-dimensional angle- 
only TMA problem, where a typical target-observer encounter is depicted in Fig 1. The 
target, located at coordinates {rxt,ryt) moves with a constant velocity vector [vxt,vyt] and 
is defined to have the state vector 

Xt = [rxt,ryt,vxt,Vyt]', 

where the prime denotes transpose. The observer state is similarly defined as 

X0 = [rXoifyoivxoj'vyo\ > 

2The extension from 2-D to 3-D has conceptually been solved in the literature [8]. 
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where the velocity vector need not be constant. By introducing the relative state vector, 
defined by 

X = Xt-X0 = [rx,ry,vx,Vy]' 

the discrete time state equation for this problem can be written as 

X(k + 1) = $(ifc + 1, k)X(k) - U{k, k + 1) 

where 

$(fc + l,fc) = 

1 0 
0 1 
0 0 
0 0 

T 
0 
1 
0 

0 
T 
0 
1 

(1) 

(2) 

is the transition matrix, T is the sampling time, and 

U{k,k + 1) = 

ui(k,k + 1) 
U2(k,k + 1) 

U3(k,k + 1) 

u^(k, k + 1) 

rxo{k + 1) - rxo{k) - Tvx 

ryo(k + 1) - ryo{k) - Tv: 

Vxo(k + 1) - vxo(k) 
vy0(k + 1) - vyo(k) 

yo 
(3) 

is a vector of deterministic inputs which account for the effects of observer accelerations. 
Observe that the state dynamics equation (1) does not contain a process noise term as we 
are assuming a constant velocity target model. Also, note that U(-,-) is deterministic since 
we implicitly assume that we have knowledge of the observer state X0 at every instant in 
time3. 

The available measurement at time k is the angle from the observer's platform to 
the target, referenced (clockwise positive) to the y-axis (i.e., angle between y-axis and 
line-of-sight, see Fig 1), and is given by 

ß(k)=ß(k)+u(k), (4) 

where u(k) is a zero mean independent Gaussian noise with variance a\ and ß(k) is the 
noise-free angle 

ß(k) = tan"1   rx{k) 

ry(k) (5) 

Given a sequence of measurements ß(k), k = 1,2,... , defined by (4) and (5), and 
target motion model described in (1), (2) and (3), the angle-only TMA problem is to 
obtain estimates of the state vector X(k) (and hence Xt(k)). 

3    The Cartesian Coordinate EKF 

3.1    Introduction 

The angle-only TMA problem in Cartesian coordinates is non-linear since the mea- 
surement equation (5) is non-linear.   Therefore, linear filtering algorithms such as the 

3The knowledge of the observer coordinates and velocities is provided by an on-board INS (inertial 
navigation system), usually supervised by a GPS system. 
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standard Kaiman filter are not applicable and one must resort to non-linear methods such 
as extended Kaiman filters 4. One of the first algorithms employed to solve the angle-only 
TMA problem was an extended Kaiman filter in Cartesian coordinates [1, 2]. This filter, 
known as the Cartesian coordinate Extended Kaiman Filter (CEKF) uses state dynamics 
and measurement models that are formulated in Cartesian coordinates. 

3.2    Development of the Algorithm 

In order to apply the principles of Kaiman Filter theory to the angle-only TMA prob- 
lem, the measurement equation (4) is re-written to show clearly the relationship between 
the measurement and state: 

ß{k) = h[X{k)]+v(k), (6) 

where 
rx{k) 

h[X(k)] =tan_1 

ry(k) 
(7) 

Now, although the target motion model given by (1), (2) and (3) is linear, the measurement 
model of (6) and (7) is non-linear. Thus, we employ an Extended Kaiman Filter (EKF) 
which is derived by linearising (7) and using an equivalent measurement matrix (evaluated 
at the predicted state) in the ordinary Kaiman Filter equations. 

The Cartesian EKF algorithm for the angle-only TMA problem is presented below. 
First, we define the terms 

X(0|0) - Initial estimate of the state 
P(0|0) - Initial estimate of the state error covariance 
X(k\k) - State estimate at k, based on k measurements 
P(k\k) - Estimate of state error covariance at k, based on k measurements 

Now, suppose we have X(k\k) and its associated error covariance matrix P(k\k). Then, 
the updated state X(k + l\k + 1), and its covariance P(k + l\k + 1) based on A; + 1 
measurements can be computed as follows [2]. 

Using X(k\k) and P(k\k), the predicted state X(k+l\k) at k+1 and its error covariance 
P(k + l\k) based on k measurements are computed as 

X(k + l\k + 1) = *(fc + 1, k)X{k\k) - U{k, k + 1) (8) 

P{k + l\k) = $(fc + 1, k)P(k\k)$(k + 1, k)' (9) 

The Kaiman gain matrix, which is used in computing the updated state, can now be 
evaluated as 

G(k + 1) = P{k + l\k)H(k + 1)' [H(k + l)P{k + l\k)H{k + 1)' + aj(k + 1)]"       (10) 

4Other filtering schemes, designed for non-linear/non-Gaussian models, such as particle or bootstrap 
filtering [12, 16] have not been considered here as they are computationally very expensive for real-time 
applications. 
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where H(k + 1) is the equivalent measurement matrix (evaluated at the predicted state), 
given by 

*(i + U  -   .«W* + »] 
dX X=X(k+l\k) 

-r„(k.4-Mk\ 
(11) 

ry(fe + l|fc) -fa(fc + l|fc) 
,, u, u 

fx(k + l\k)2 + ry(k + l\k)2' rx{k + l\k)2 + fy(k + l|fc)2 

The updated state and its covariance matrix are given by 

X(k + l|fc + 1) = X{k + l\k) + G{k + 1) [ß(k + 1) - ß{k + l\k)] (12) 

P(k + l\k + l) = [I-G{k + l)H(k + 1)] P(k + l\k), (13) 

where I is the 4 x 4 Identity matrix and ß(k + l\k) — h[X(k + l\k)]. 

Equations (8)-(13) constitute the EKF in the Cartesian coordinates. Some comments 
on initialisation of state estimate and its covariance are in order here. In general, for 
reliable performance of the EKF, the initialisation is critical, and thus some a priori 
knowledge of the range and allowable speeds for the target is helpful. Suppose we have 
some a priori knowledge of the mean of the initial range and its variance, given by f and 
a2, respectively. Also, suppose the target moves with a speed less than smax. If a certain 
distribution of the speeds is assumed, one can ascertain the variance a2 corresponding to 
the velocity of the target. With the above assumptions, the state and its covariance can 
be initialised as follows: 

X(0|0) = [fsin/3(0),f cos0(O),O,O]', (14) 

P(0|0)= diag [alalala2,], (15) 

where ß(0) is the initial angle measurement. 

3.3    Properties and Performance of the Algorithm 

The properties and performance of the Cartesian coordinate EKF is well documented 
[1,2]. In general, this algorithm is not always guaranteed to work, and its performance de- 
pends on measurement noise levels and on proper initialisation of the state and associated 
covariance matrix. Furthermore, in order to be able to track the target with angle-only 
measurements, it has been found [1, 2] that the observer must maneuver5. The commonly 
observed problem with the Cartesian EKF is the premature collapse of the error covariance 
matrix even prior to an observer maneuver. What this means is that the error bounds of 
the estimate, even though they should remain high prior to an observer maneuver, rapidly 
deteriorate to a small value. Tight error bounds around the current estimate give little 
or no room at all to correct the estimate and filter divergence results. The cause for this 
error covariance matrix collapse is the dependence of the computation of error covariance 
matrices on state estimates. In particular, if the state estimates are in error, this would 
result in an incorrect estimation of the covariance matrices. 

5This result is applicable to all angle-only TMA algorithms 
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4    The Pseudo-Linear Estimator 

4.1    Introduction 

It was mentioned earlier that the Cartesian EKF suffers from filter divergence caused 
by premature covariance matrix collapse. This is the result of the dependence of the 
covariance computation on state estimates which could be in error. To eliminate this 
problem, a new algorithm, called the Pseudo-Linear Estimator (PLE) was proposed [2, 3] 
which essentially decouples the covariance matrix computations from the estimated state 
vector. The decoupling technique involves replacing measured angles with Pseudo-Linear 
measurement residuals [2, 3] as will be seen shortly. An attractive feature of this approach 
is that it permits a solution to the angle-only TMA problem via linear estimation theory. 

4.2    Development of the Algorithm 

To derive the Pseudo linear estimator, observe that the non-linear equations (6) and 
(7) can be algebraically manipulated to yield a new measurement equation [3] 

0 = H{k)X{k)+e(k), (16) 

where 

H   =   [cosß{k),-smß(k),0,0], 

e(k)    =   r(k)smv(k), 

r(k)    =    y/rx(k)*+ry{k)2, (17) 

and ß(k) is the measured angle at time k. Note that though (16) appears linear, the 
nonlinearity in (6) and (7) has been embedded in the new measurement noise term e(k) 
which is a function of the state. 

In order to use Kaiman filter theory, we assume e(k) to be a white Gaussian process 
and independent of the initial state estimate. This does not really hold since e(k) is 
neither normally distributed nor white. However, for the purpose of applying Kaiman 
filter equations, we continue to use the white Gaussian assumption for e(k) which has first 
and second moments given by [3] 

E[e{k)]    =   0 

-E[<?{kj\    =    ^(l-e-^W) 

«   r2(k)aj(k),    aj{k) « 1 

Now, the Kaiman filter corresponding to the new measurement equation (16) may be 
derived from (8)-(13) by replacing certain terms with others. In particular, if 

f(k + l\k) = yjH(k) + rl(k), 
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the Pseudo-Linear estimator is obtained by replacing H(k) with H(k), <jß{k + 1) with 
f(k + l\k)aß{k + 1), and {ß{k + 1) - h[X{k + l\k)]} with -H(k + l)X(k + l|fc). However, 
it has been argued [3] that if the initial covariance matrix and the effective measurement 
noise variance are appropriately normalised, replacing Oß[k + 1) with f(k + l\k)aß(k + 1) 
is unnecessary. Furthermore, the initialisation of state and its covariance matrix were set 
to be the null vector and identity matrix, respectively. Thus, the Pseudo-Linear estimator 
algorithm takes the form [3] 

X(0|0)    =   0, 

P(0|0)   =   /, 

X(k + l\k)   =   $(k + l,k)X(k\k)-U{h,k + l) 

P(k + l\k)    =    $(A + l,fc)P(fc|fc)$(fc + l,fc)' 

H(k + 1)   =   [cos)8(fc + l),-sin/3(fc + l),0,0] 

G(k + 1)   =   P(k + l\k)H{k + l)'[H{k + l)P{k + l\k)H(k + l)'+ a}{k + l)]~1 

X{k+ l\k + l)    =   X{k + l\k)-G(k + l)H(k + l)X(k + l\k) 

P(fc + l|fc + l)    =    [l-G(k + l)H(k + lj\P{k + l\k) (18) 

4.3    Properties and Performance of the Algorithm 

The performance analysis of this Pseudo-Linear filter is presented in [2, 3]. It is shown 
that estimates of the target's velocity are asymptotically unbiased, but the estimated 
range exhibits steady-state bias. The reason for this bias is attributed to the fact that 
the measurement matrix H contains elements that are functions of noisy angles and are 
correlated with the noise terms. In particular, the gain matrix is correlated with the 
residual (difference between actual and predicted measurements) which causes the PLE 
to exhibit bias. However, the performance analysis also showed that the filter performed 
well under low measurement noise levels or high angle rates, which generally characterises 
a close range target-observer scenario. 

5    The Modified Gain EKF 

5.1    Introduction 

Recall that the Cartesian EKF exhibited filter instability due to the dependence of 
the covariance computations on the state estimates. To eliminate this problem, the 
Pseudo-Linear estimator was proposed which had a linear measurement equation with 
non-linearities embedded in a new noise term. Although the covariance computations are 
independent of the state estimates, the gain matrix is correlated with the residual and this 
resulted in biased estimates. The Modified Gain Extended Kaiman Filter (MGEKF) [10] 
attempts to alleviate both problems of the previous filters. In particular, it is designed to 
produce estimates that are both stable as well as asymptotically unbiased. 
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5.2    Development of the Algorithm 

The MGEKF algorithm is derived by observing that one can write [11] 

ß(k + 1) - ß{k + l\k) =Hi{k + 1) [X(k + 1) - X(k + l|fc)] (19) 

where ß(k + 1) is the noise-free angle at k + 1, ß{k + l\k) is the predicted angle at k + 1 
based on k measurements, and 

tfi(fc + l) = 
cosj8(fc + l),-sin/9(A; + l) 

rx(k + l\k) sinß{k + 1) + ry(k + l|fc) cosß{k + 1) 
,0,0 (20) 

Now, using (19) in (1-2) and substituting the measured angle ß(k + 1) for ß(k + 1), (12) 
can be re-written as 

X{k + l\k + 1) = X(k + l|fc) + G(fc + l)ff(A: + 1) [X{k + 1) - X(fc + l|fc)] (21) 

where 

H{k + 1) 
cos/3(fc + l),-sin/3(fc + l) 

fx(k + l|fc) sinß(k + 1) + fy(k + 1|ä) cos /3(A; + 1) 
,0,0 (22) 

Observe that the filter update equation of (21) looks linear with measurement matrix 
H(k + 1). Thus, we could replace the matrix H(k + 1) with H(k + 1) in the_ Cartesian 
EKF equations (8)-(13). However, in the gain computation equation (10), if H(k + 1) is 
used instead of H(k +1), biased estimates are expected since the gain and the residual will 
then be directly correlated in a manner similar to the Pseudo-Linear filter. Thus, a gain 
equation similar to (10) which ensures that the gain is a function of the past measurements 
only is desirable. Now, notice that 

H{k + 1)    = ,2>°'° 
fy{k + l\k),-rx(k + l\k) 

rx{k + l\kf + ry{k + l\ky 

cosßjk + l|fe), - sin/j?(A: + l|fc) 

fx(k + l\k) sinß{k + l\k) + fy{k + l\k) cosß(k + l\k) 
,0,0 (23) 

which is essentially the H(k + 1) matrix with the measured angle ß{k + 1) replaced by 
the predicted angle ß(k + l\k). Thus, in replacing H{k + 1) with H(k + 1) in the gain 
equation (10), we substitute the predicted angle ß(k + l\k) for the measured angle. Note 
from (23) that this is equivalent to leaving (10) unaltered! Thus, the only modification 
required in the equation set (8)-(13) is the replacing of H{k + 1) with H(k + 1) in the 
covariance update equation (13). A summary of the MGEKF algorithm is as follows: 

X(k + l\k)   =   $(k + l,k)X{k\k)-U{k,k + l) 

P(k + l\k)   =   $(k + l,k)P(k\k)$(k + l,k)' 

cosß(k + l\k),-smß{k + l|fc) 
-,0,0 

[rx(k+ l\k) sin ß{k + l\k) + fy{k + l\k) cos ß(k + l\k) 

G(k + 1)    =   P(k + l\k)H(k + l)'[H(k + l)P(k + l\k)H(k + l)' + a}{k + l)] 
-l 
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X(k + l\k + l)   =   X(k + l\k) + G(k + l)[ß{k + l)-ß(k + l\k)] 

cosß(k + l),~smß(k + l) 
H{k + 1)   = -,0,0 

fx(k + l\k) sinß(k + 1) + fy{k + l|fc) cosß(k + 1): 

P{k + l\k + l)   =   [I-G{k + l)H{k + l)]P(k + l\k) (24) 

The MGEKF algorithm can be initialised in a similar manner to that of the Cartesian 
EKF. 

5.3    Properties and Performance of the Algorithm 

The performance of this algorithm is documented in [10, 11]. It was found that the 
MGEKF algorithm results in stable and asymptotically unbiased estimates. The estimates 
are stable since the computation of the covariance update uses the H(k + 1) matrix in 
which measured angle is used, instead of H(k + 1) in which the estimated angle is em- 
ployed. Furthermore, the asymptotic unbiasedness is due to the fact that the gain matrix 
is uncorrelated with the residual. Thus, the MGEKF has retained the best properties of 
the ordinary Cartesian EKF and the Pseudo-Linear estimator. 

6    The Modified Polar Coordinate EKF 

6.1 Introduction 

It has been shown that the estimation algorithms for the angle-only TMA problem for- 
mulated in Cartesian coordinates have resulted in unstable and biased estimates. Specif- 
ically, the Cartesian coordinate EKF exhibits filter divergence while the Pseudo-Linear 
estimator shows biased characteristics. To overcome these difficulties, a new extended 
Kaiman filter was proposed [4], which was formulated in a different coordinate system 
called the Modified Polar (MP) coordinates. This coordinate system was shown to be well 
suited for angle-only target motion analysis because it automatically decouples observable 
and unobservable components of the estimated state vector. Such decoupling prevents 
covariance matrix ill-conditioning which is the primary cause of filter instability. 

The MP state vector is comprised of the following four components: angle, angle rate, 
range rate divided by range, and the reciprocal of range. In theory, the first three can 
be determined from single-sensor angle data without an ownship maneuver; the fourth 
component, however, remains unobservable until a maneuver occurs. 

6.2 Development of the Algorithm 

To derive the Modified Polar coordinate Extended Kaiman Filter (MPEKF), consider 
the state dynamics and measurement equations for the angle-only TMA problem in Carte- 
sian coordinates which are repeated here for convenience, 

X(k + 1) = $(fc + 1, k)X(k) - U{k, k + 1) (25) 
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ß(k)=hx[X{k)]+u(k) 

where $(-,-) and U(-,-) are defined in (2) and (3), respectively, and 

rx(k) 
hx [X{k)\ = tan"1 

ry(k) 

(26) 

(27) 

X(k)   =   [x1(k),X2(k),x3(k),x4(k)]' 

=    [rx{k),ry{k),vx(k),vy{k)]f. 

Note that the subscript x in hx[-] denotes the h[] function in Cartesian coordinates. 

The first step in deriving the EKF in MP coordinates is to derive an equivalent set of 
state dynamics and measurement equation as in (25), (26) and (27) in these coordinates. 
This turns out to be difficult if conventional modeling techniques are employed as the 
transformed equations of motion are highly nonlinear in these coordinates. Fortunately, 
the difficulties with the conventional approach can be avoided by recognising that we can 
derive the required equations by algebraic manipulations. To see this, let Y(k) denote the 
MP state vector: 

Y(k)   =   [yi{k)Mk),yz{k),yA{k)] 

r(k)' r(k) 
(28) 

Now, it can be established, as will be seen below, that X(k) and Y{k) are related at all 
times by the non-linear one-to-one transformations 

X(k) = fx[Y(k)} (29) 

Y(k) = fy[X(k)} (30) 

To derive these transformations, we note the following relationships between Cartesian 
and polar coordinates: 

rx =   rsinß 

ry =   r cos ß 

vx —   rx = r sin ß + rß cos ß 

Vy =   Ty = r cos ß — rß sin ß (31) 

and 

ß 

ß 

tan -l 

rxv, xvyl 

{rl + rl) 

= s 
r    = 

(rXVX   +  TyVy) 

i 
(32) 

ri + ri 

10 
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Prom (31) and (32), we can obtain the necessary functions fx[-] and fy[-], and the result 
is [4, 9] 

X(k)   =   fx[Y(k)} 

1 
y-i(k) 

sin y3{k) 
cos y3(k) 

y2 (k) sin yz (k) + yi (k) cos yz (k) 
y2(k) cos y3(k) - yi(k) siny3(k) 

and 

Y(k)        =        fy[X(k)] 

[x3(k)x2(k) - x4(k)Xl(k)}/ [xl(k) + x2
2(k)} 

[x3{k)xi{k) + x4(k)x2(k)]/ [xj{k) + x2
2{k)} 

tan-1 [xi(k)/x2(k)] 

1 

(33) 

(34) 

(35) 

(36) 

y/xl(k)+xl(k) 

Now, substituting (33) for X(k) in (25), we get 

X(k + 1) = $(fc + 1, k)fx [Y(k)\ - U(k, k + 1) 

By using the transformation (34) for Y(k + 1), it follows that 

Y(k+l) = fy[X(k+l)} 

= fy[^(k+l,k)fX[Y(k)]-U(k,k   +   l)] 

=   f[Y(k);k,k + l] 

It can be shown using (33), (34) and (36) that 

f[Y(k);k,k + l]    =    [/l,/2,/3,/4]' 

(a2a3 - ai<y.4)/(a\ + a%) 
(aia3 + a2a4)/(a\ + a\) 

y3{k) + tan-1 (o>i/a2) 

y4(A:)/(a? + «l)1/2. 

where CKJ, i — 1,..., 4 are functions of Y(k) and U(k, k + 1), given by 

«l = Ty^k)-y4{k) [u1(k,k +1) cos ß{k)-u2{k,k +1) sinß{k)} 

a2 = 1 + Ty2(k) - y4(k)[ui{k,k + l) sinß{k) + u2(k,k + l) cosß(k)] 

«3 = yi{k)-y4(k)[u3(k,k+ l)cosß(k) - u4(k,k + l)sinß(k)] 

«4 = y2{k) - y4(k) [u3{k, k + 1) sinß{k)-u4{k,k +1) cosß(k)] (38) 

Similarly, the measurement equation can be expressed in Modified Polar coordinates by 
substituting (33) in (26), i.e., 

(37) 

ß(k) = hy[Y{k)]+U(k) 

=   [0,0,l,0]Y(fc) + i/(fc) (39) 

11 
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Equations (36) and (39) are exact analogs of (25) and (26). We note that the measurement 
equation (39) is linear while the state dynamics equation (36) is non-linear. Straightfor- 
ward application of the EKF to (36) and (39) will now yield the Modified Polar coordinate 

EKF described below. 

Y(0\0)    =    Initial estimate of MP state vector 

p(0|0)    =    Initial estimate of MP state vector error covariance matrix 

Y(k + l\k)    =   f[Y(k\k);k,k + l] 

df\Y(k);k,k+J\ 
Y=Y{k\k) 

F{k + l,k)   = 

i-i 

dY 

P{k + l\k)   =   F(k + l,k)P{k\k)F(k + l,k) 

Hy   =   [0,0,1,0] 

G(k + 1)    =   P{k + l)H'y[HyP(k + l\k)Hy + a2
ß{k + l)} 

Y(k + l\k + l)   =   Y{k + l\k) + G(k + l)[ß{k + l)-HyY(k + l\k)] 

P(k + l\k + l)   =   [I-G{k + l)Hy]P(k + l\k) (40) 

Note that the computation of the linearised transition matrix F(k + 1, k) is described in 

the appendix. 

Comment on the filter initialisation problem is in order here. To obtain reasonably 
good initial estimates, one could use some batch processing techniques and then apply the 
MPEKF. Otherwise, an initialisation approach suggested in [13] can be employed. In [13] 
it is assumed that we have knowledge of the mean of the initial range, f, and its variance 
of. Also, suppose the velocity error standard deviation, ov, is known. Then, the MPEKF 
can be initialised according to [13] as 

y(o|o) = [o,o,/3(o),i/f]', 

where ,0(0) is the initial angle measurement.   The corresponding state error covariance 

matrix is initialised to be [13] 

P(0|0) = dia,g[aj,al/R,a},a2
1/R}' 

where 

a 

a 

=    crv/r 

R/R     ~     °v'f 

aß   =    measurement standard deviation 

a1/R   =   er/f 

6.3    Properties and Performance of the Algorithm 

The performance of the Modified Polar coordinate EKF has been documented in [4, 9]. 
The analysis showed that MPEKF outperforms the Cartesian EKF and Pseudo-Linear 
estimator in both short and long range scenarios. Furthermore, it was found that MPEKF 
is both stable and asymptotically unbiased. 

12 
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7    Range Parameterised EKF Trackers 

7.1    Introduction 

This section presents a new angle-only TMA approach which consists of a set of 
weighted EKFs, each with a different initial range estimate. The tracker, referred to 
as Range-Parameterised (RP) tracker, is particularly useful when there is very little a 
priori knowledge of the initial target range. Two range-parameterised trackers will be 
considered in this report: a) Range-Parameterised Cartesian coordinate EKF (RPCEKF), 
and b) Range-Parameterised Modified Polar coordinate EKF (RPMPEKF). The principles 
involved in these two trackers are essentially the same, and thus the rest of this section 
will introduce the concepts applicable to both algorithms. 

7.2    General Principles 

The tracking approach of the RP EKF trackers is to track the state of the target with 
a number of independent EKF trackers, each with a different initial range estimate. To 
do so, the range interval of interest is divided into a number of subintervals, and each 
subinterval is tracked with an independent EKF. 

Suppose the range interval of interest is (Rmin,Rmax), and we wish to track using 
Np EKF filters. For a particular EKF, we note that the tracking performance is highly 
dependent on the Coefficient of Variation of the range estimate [13], CR, given by OR/R, 

where R and OR are the range estimate and its standard deviation, respectively. In order 
to maintain a comparable performance for all 7V> filters, it is desirable to subdivide the 
interval (Rmin,Rmax) such that CR is the same for each subinterval. Note that CR for 
each subinterval may be computed approximately as aRi/Ri, where Rt is the mean of 
subinterval i and OR{ is the range standard deviation for that subinterval. Assuming the 
range errors to be uniformly distributed in each subinterval, the desirable subdivision can 
be obtained if the subinterval boundaries are chosen as a geometrical progression. If p is 
the common ratio, we have the relation 

which gives p as 

P = 
1/NF 

For the above division of range, it is easily established [15] that the coefficient of variation 
is given by 

aRi 2(p - 1) 
CR

 
=
 ~R- 

=
 vü(p+iy (41) 

To determine how the state estimate of each filter is combined, we need to compute 
the weights associated with each EKF. At time step 1, let the probability that the true 
track originated from the i-th subinterval be denoted by Prob(i,l).  These probabilities, 
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which form the initial weights for the RP tracker, can be obtained from a uniform distri- 
bution when no prior information about the true range is available. The corresponding 
probabilities at time k can be computed recursively according to Bayes' rule, 

Prob(/9(fc)|QProb(i,fc-l) 

Y,"liProb(ß{k)\j)Piob(j,k-l) 

where Prob(/3(/c)|i) is the likelihood of measurement ß{k), given that the target originated 
in subinterval i. Assuming Gaussian statistics, this can be computed as [13] 

Piob(ß(k)\i) = 
1 1 fß(k)-ß(k,i\k-l)\2 

V2ira2     P 
(43) 

where ß(k,i\k - 1) is the predicted angle at k for filter i, and a1 is the innovation variance 
given by 

a2 = H(k)P(k\k-l)H{k)' + aj{k), (44) 

where H(•) is the linearised measurement matrix, and a2ß{k) is the variance of the measured 
angle. 

Now, suppose the updated state estimate of filter i (corresponding to subinterval i) is 
denoted by X(k, i\k). Then, the updated state estimate of the RP tracker can be computed 
as a weighted sum of the individual estimates [15], 

NF 

X(k\k) = Y^ Prob(«, k)X(k, i\k). (45) 
i=i 

Similarly, if P(k, i\k) denotes the covariance matrix of the i-th filter at k, the corresponding 
covariance for the RP tracker may be computed as [15] 

NF 

P(k\k) = £ Prob(i, k) [P(k, i\k) + {X{k, i\k) - X{k\k))(X(k, i\k) - X(k\k))'] .     (46) 
i=i 

The improved tracking performance of the RP tracker is achieved by tracking JV> in- 
dependent EKF trackers, each with a much smaller coefficient of variation than would be 
required by a single EKF. This improvement is achieved at the expense of an JV>-fold in- 
crease in computations if all the range subintervals are processed throughout. However, it 
has been found [13] that in a majority of target-observer scenarios, the weighting of some 
of the subintervals rapidly reduces to zero. In such cases, the corresponding filters can 
be removed from the tracking process without loss of accuracy, thereby reducing the pro- 
cessing requirement. Thus, a weighting threshold can be set and any filter corresponding 
to a subinterval with a weight less than the threshold may be removed from the tracking 
process. 

The tracker initialisation for RP-Cartesian and RP-Modified Polar EKFs are carried 
out according to the principles discussed in sections 3.2 and 6.2, respectively. The only 
changes required are, for filter i the mean of the range is replaced by Ri (mean of subin- 
terval i), and the range standard deviation is replaced by a^ (range standard deviation 
for subinterval i), assuming range errors to be uniformly distributed in that subinterval. 

14 
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7.3    Properties and Performance of the Algorithms 

The properties and performance of the RPCEKF and RPMPEKF are well documented 
in [15] and [13], respectively. It is found that the RP trackers show better tracking perfor- 
mance than the CEKF or MPEKF trackers in a typical tracking scenario. In addition, the 
RP tracker is found to be stable even under adverse tracking conditions such as when the 
angle rate is very high or near zero. The improved tracking performance is achieved due to 
the fact that the RP tracker divides the large prior range uncertainty region into a num- 
ber of smaller subintervals, each with a lower coefficient of variation than the single-filter 
trackers. Since a number of EKFs are processed in parallel, this improvement comes at the 
expense of increased processing. However, it is found that in most cases, the weighting 
of some filters reduces rapidly to zero. When this occurs, those filters can be removed 
from the tracking process without loss of accuracy, resulting in a tracker that is not so 
computationally intensive. 

8    Simulation Results 

To illustrate the angle-only tracking performance for the algorithms described in this 
report, the algorithms were implemented in Matlab and simulations were set up for two 
scenarios. Scenario 1 corresponds to an initial target range of 35 km while the same 
parameter for scenario 2 is 70 km. The target maintains a constant speed and bearing of 
200 km/h and 45°, respectively. Ownship also maintains a constant speed of 600 km/h, 
but periodically executes 90° course changes as follows: 

from 90° to 0° at t = (10 + 40A;)T sec,   k = [0,1,2] 
from 0° to 90° at t = (30 + 40A;)T sec,   k = [0,1] 

where the sampling time T = 3 sec. The target-observer geometry for the simulations 
is depicted in Fig 2. Angle measurements were sampled for a total period of 300 sec (5 
minutes). Note that the above course changes correspond to a total of five maneuvers (i.e., 
maneuvers are carried out at (10,30,50,70,90) x T sec) during the observation period. For 
all simulations, the angle measurement noise was set at <jß = 2.5°. The initialisation of 
the state vector and its covariance matrix were carried out as follows. The PLE algorithm 
was initialised according to section 4 where the initialisation was found to be independent 
of the parameters of the scenario. For the other algorithms, the initial range estimates for 
scenarios 1 and 2 were set to be 60 km and 50 km, respectively. The covariance matrices for 
the CEKF and MGEKF algorithms were initialised according to section 3 with ar = 15 km 
and al = 0.02 (km/s)2. Note that a2 = 0.02 corresponds to a uniform speed assumption, 
with a maximum speed of 900 km/h. The initialisation of the covariance matrices for the 
MPEKF algorithm was done on an adhoc basis as the algorithm showed great sensitivity 
to initialisation parameters. Though no claim of optimality is implied, the Modified Polar 
coordinate EKF was found to perform well, when its covariance matrix was initialised 
according to 

P(0|0)    =    diag[7.2 x HT5,4 x HT6,9 x HT3,7 x MT10],    scenario 1 

P(0|0)    =    diag[6 x 10~3,3.6 x 10~7,9 x 10~3,1 x 10-11],    scenario 2 

15 



DSTO-TR-0917 

target trajectory 

t = 30T 
t = 50T 

observer trajectory 

t = 0     t = WT 

Figure 2: Target-Observer geometry for the simulations 

Finally, all results have been ensemble averaged over 100 Monte-Carlo runs. 

Figure 3 shows the estimation errors for range, azimuth, speed, and heading, corre- 
sponding to scenario 1 (initial range 35 km). From these results, we note that for the 
scenarios considered, the modified gain EKF only results in marginal improvements in the 
estimates compared with the standard Cartesian EKF. In fact, the MGEKF and CEKF 
show almost identical performance. In all algorithms, the range estimates converged to 
within about 5 km from the true range after 3 maneuvers. Also, note that the step- 
jump-like features of some of these error curves correspond roughly to the times at which 
ownship executes a maneuver. Azimuth estimate performances for all algorithms were 
good throughout the observation period except for PLE which shows erratic behaviour 
during the initial period. This is due to the fact that the PLE initialisation is scenario 
independent (zero initial state vector), and thus a large initial error is expected before 
a maneuver. For speed estimates, the results of Fig 3 show that CEKF and MGEKF 
were the best while PLE exhibits considerable bias. However, note that the heading error 
corresponding to the PLE and MPEKF converges quickly to zero compared with the other 
two algorithms. 

Figure 4 shows similar results for scenario 2 where the initial range is 70 km. From 
these graphs it is evident that the MPEKF outperforms the other algorithms in terms of 
convergence of error in the quantities of interest. Also, though the azimuth and heading 
error estimates show comparable asymptotic performance in all four algorithms, the range 
and speed estimate errors have substantial bias in all but the Modified Polar coordinate 

EKF. 

It must be emphasised that the performance of all the single-filter algorithms considered 
(except PLE) depends very much on the initialisation parameters for the state vector and 
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its covariance. Further, since the Cartesian and Modified Polar coordinate EKFs have 
different state vector and covariance matrices, its initialisation is also quite different. Thus, 
it is difficult to obtain a reliable comparison of the four single-filter tracking algorithms 
under an equivalent set of initialisation parameters. Nevertheless, the simulations such as 
the one carried out here should still highlight certain features pertinent to these algorithms, 

such as the biased estimates of PLE. 

Next, we discuss the simulation results for the range-parameterised trackers, namely 
RPCEKF and RPMPEKF. For the use of RP trackers, the range interval (Rmin,Rmax) 
was chosen to be (5 km, 160 km). In addition, a 20% coefficient of variation for the range 
estimate was selected, which resulted in a division of the range interval into five subinter- 
vals, with subinterval boundaries (5,10,20,40,80,160) km. Thus, five EKF trackers were 
used for each RP tracker. The weighting threshold was set at 0.001 so that weights below 
this value implied the removal of the corresponding filter from the tracking process. 

Figure 5 compares the estimation errors for CEKF and MPEKF with their correspond- 
ing RP counterparts for the case where initial target range is 70 km. The initial range 
estimate for the CEKF and MPEKF were selected such that the initial range error was 
40 km. Furthermore, the MPEKF was initialised according to section 6.2, i.e., the initial 
covariance matrix was not 'tuned' for optimum performance. In Fig 5, the large initial 
fluctuations in estimation errors for the MPEKF algorithm show that this algorithm is 
rather sensitive to initialisation parameters. Also, a comparison of estimation errors shows 
that the corresponding RP trackers are better than CEKF and MPEKF, except for asymp- 
totic heading error which was best for the CEKF. In addition, the results show that the 
two RP trackers, RPCEKF and RPMPEKF, exhibit similar performance. Although the 
RP trackers show good overall error performance, due to the large initial range errors, the 

speed estimates have substantial bias. 

Figure 6 shows similar results to Fig 5 for the case where the MPEKF initial covariance 
matrix is optimised by trial and error. When the MPEKF algorithm is tuned this way, it 
is evident from Fig 6 that it outperforms the RP trackers. This, however, is not a very 
practical scheme as it involves a trial and error tuning of the initial covariance matrix. 
From Figs 5 and 6, it is seen that the MPEKF algorithm is very sensitive to initialisation 
parameters, particularly to the setting of the initial covariance matrix. The advantage 
of using the RP trackers is that they seem to perform well without a need to tune the 
initialisation parameters (as can be seen from Fig 5). This is the most attractive feature 
of the RP trackers. 

Figure 7 shows similar results to Fig 5 for the case where the initial range error is 
20 km. For this relatively small range error, Fig 7 shows that there is very little or no 
improvement in using the RP trackers instead of CEKF or MPEKF. Thus, we infer that 
the RP trackers are beneficial only when there is very little a priori knowledge of the 
initial range estimate. 
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Figure 3:   Track Estimation Errors for Scenario 1.   Comparison of the four single-filter 

Angle-only TMA algorithms 
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Figure 4:   Track Estimation Errors for Scenario 2.   Comparison of the four single-filter 
Angle-only TMA algorithms 

19 



DSTO-TR-0917 

Range Error vs Time 
150 

100 

-100 

2000 

!c1500 
"E 

t 1000 
LU 
-o 
<D 
<D 

W   500 

— CEKF 
- RPCEKF 

MPEKF 
-■  RPMPEKF 

100 200 
Time [sec] 

Speed Error vs Time 

300 

  CEKF 
- - RPCEKF 

MPEKF 
■-• RPMPEKF 

100 200 
Time [sec] 

300 

Azimuth Error vs Time 

  CEKF 
- - RPCEKF 
■■••  MPEKF 
•-■  RPMPEKF 

100 200 
Time [sec] 

Heading Error vs Time 

300 

100 200 
Time [sec] 

300 
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9    Conclusion and Further Work 

This report has presented a survey of recursive style angle-only TMA algorithms that 
have potential application in airborne tracking in a jamming environment, particularly 
for estimation of the range to the jammer. The algorithms considered were, a) Carte- 
sian coordinate EKF, b) Pseudo-Linear estimator, c) Modified gain EKF, d) Modified 
Polar coordinate EKF, e) Range-Parameterised Cartesian coordinate EKF, and f) Range- 
Parameterised Modified Polar coordinate EKF. The first four algorithms consist of single 
filters and the last two are based on a weighted sum of multiple filter outputs. 

Among the single-filter trackers, the MPEKF appears to be slightly better for the 
scenarios considered. However, it is found that the MPEKF algorithm relies very much 
on proper initialisation parameters, particularly the initial state error covariance matrix, 
which in some cases needs tuning by trial and error. This initialisation problem is overcome 
by the range-parameterised trackers which produce good results even with virtually no a 
priori knowledge of initial target range. However, this advantage comes with an increased 
computational requirement due to the parallel processing of multiple filters. Further re- 
sults show that if the initial range error for the single-filter trackers is small, then their 
performance is no worse than that of the RP trackers. 

The next stage of the angle-only TMA research will address a number of issues. First, 
a systematic initialisation procedure based on [14] will be developed for the MPEKF 
algorithm to remove the current adhoc tuning of the initialisation parameters. Second, so 
far no attempt has been made to optimise observer trajectory for optimum performance, 
within the bounds of normal engagement maneuvers. Thus this needs to be investigated. 
Third, the case where angle information and ambiguous range and doppler information 
is available, such as in the case of multiple false target jamming and other deceptive 
jamming techniques, will be explored. Fourth, the difficult problem of angle-only target 
motion analysis for the case of a maneuvering target will be attacked. Though it has been 
recognised as a challenging problem, it deserves attention as the problem is very realistic. 
Next, the dimensionality will be increased from 2-D to 3-D to make these algorithms more 
suited for airborne applications. Finally, the developed algorithms will be incorporated 
into the existing pulse-doppler airborne radar model and tested against the simulated 
scenarios involving deceptive jamming. 
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Appendix A:      Computation of the linearised 
transition matrix 

The linearised transition matrix F(k+l,k), for the Modified Polar coordinate EKF, was 
defined to be 

F(k + l,k) = 
df[Y(k);k,k + l] 

dY Y=Y(k\k) 

The RHS of (Al) can be written as [9] 

df[Y(k);k,k + l] 

where 

dY 

C   = [cij\, 

D   = [dij], 

E   = fa], 

= C + DE 
Y=Y{k\k) 

C-H — 
dh 

dai 
ßj-   — 

The elements c^, dij and dj can be evaluated with the result 

C = 

and 

D = 

0   0 0 0 
0   0 0 0 
0   0 1 0 
0   0 0   l/(a2 + a2,)1/2 _ 

d\\ —d2i du     d32 

cfel du —d32     ^13 
dz\ d32 0        0 
du d±2 0        0 

where 

and 

d\i = [-ai(a2a3 - aia4) - a2(axa3 + a2a4)] /(a? + a2,)2 

d21 = [-a1(aia3 + a2ai) + a2(a2a3-aia4:)]/(a1+a2) 

«fei = «2/(0? + al) 
<ki = -aiHk\k)l(<xl+al?'2 

d32 = -ai/(a2 + e%) 
d42 = -a2y4(A;|A;)/(a? + ai)3/2 

dn = a-2l{a\ + al) 

E = 

T 0 ei3 ei4 

0 T e23 e24 
1 0 e33 e34 

0 1 e43 e44 _ 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 
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ei4 = — [ui(Ar,A;4-1) cos y3(fc[fc) - u2{k,k+ 1) siny3(k\k)] 

e24 = - [ui(k, k+ 1) siny3(k\k)+u2{k,k +I) cos y3(k\k)] 

e34 = - [u3(k, k +I) cos y3(k\k)-Ui(k,k +I) siny3{k\k)] 

e44 = - [u3(k, k + 1) siny3{k\k) + m{k,k +I) cos y3(k\k)] 

ei3 = -yi{k\k)e2i 

e23 = yi{k\k)eu 

e33 = -yi{k\k)eAi 

e-AZ = y4{k\k)e34 (A8) 
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